Entire Functions Sharing a Second order Polynomial with its Derivatives

Goutam Kumar Ghosh

Dr. Bhupendranath Dutta Smriti Mahavidyalaya, Hatgobindapur, Burdwan, India

Abstract: We prove a uniqueness theorem for an entire function, which share a function with their first and second order derivatives. We improve some existing results,

Keywords: Entire function, Polynomial, Uniqueness

1 Introduction, Definitions and Results

Let f be a non-constant meromorphic function in the open complex plane $\mathbb C$. We denote by T(r,f)the Nevanlinna characteristic function of f and by S(r, f) any quantity satisfying $S(r, f) = o\{T(r, f)\}$ as $r \to \infty$ except possibly a set of finite linear measure.

Let f and g be two non-constant meromorphic functions and let a be a complex number. We denote by E(a; f) the set of a-points of f, where each point is counted according its multiplicity. We denote by $\overline{E}(a;f)$ the reduced form of E(a;f). We say that f and g share a CM, provided that E(a;f)=E(a;g), and we say that f and g share a IM, provided that $\overline{E}(a;f)=\overline{E}(a;g)$. In addition, we say that f and g share ∞ CM, if $\frac{1}{f}$ and $\frac{1}{g}$ share 0 CM, and we say that f and g share ∞ IM, if

$$\frac{1}{f}$$
 and $\frac{1}{g}$ share 0 IM.

For standard definitions and notations of the value distribution theory we refer the readers to [2]. However we require the following definitions.

Definition 1.1 A meromorphic function a = a(z) is called a small function of f if T(r, a) = S(r, f).

Definition 1.2 Let f and g be two non-constant meromorphic functions defined in C. For $a,b \in \mathbb{C} \cup \{\infty\}$ we denote by $N(r,a;f \mid g \neq b)(\overline{N}(r,a;f \mid g \neq b))$ the counting function (reduced counting function) of those a-points of f which are not the b-points of g.

Definition 1.3 Let f and g be two non-constant meromorphic functions defined in C. For $a,b \in C \cup \{\infty\}$ we denote by $N(r,a;f \mid g=b)(\overline{N}(r,a;f \mid g=b))$ the counting function (reduced counting function) of those a-points of f which are the b-points of g.

In 1977 L.A.Rubel and C.C.Yang [7] first investigated the uniqueness of entire function sharing certain values with their derivatives. They proved the following result.

Theorem A [7] Let f be a nonconstant entire function. If $E(a; f) = E(a; f^{(1)})$ and $E(b;f) = E(b;f^{(1)})$ for two distinct finite complex numbers a and b then $f \equiv f^{(1)}$

In 1979 E.Mues and N.Steinmetz [6] improved theorem A in the following manner.

Theorem B [6] Let a and b be two distinct finite complex numbers and f be a nonconstant entire function. If $\overline{E}(a;f) = \overline{E}(a;f^{(1)})$ and $\overline{E}(b;f) = \overline{E}(b;f^{(1)})$, then $f = f^{(1)}$.